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Abstract 
In this paper we introduce a mechanism f or executing general binary JOIN operations (for predicates that 

satisfy certain properties) in an outsourced relational database framework with computational privacy and low 

overhead – a first, to the best of our knowledge. In an outsourced database framework, clients place data 

management responsibilities with specialized service providers. Of essential concern in such frameworks is data 

privacy. Potential clients are reluctant to outsource sensitive data to a foreign party without strong privacy 

assurances beyond policy “fine prints”. 

We experimentally evaluate the main overhead components and show they are reasonable.  

 We illustrate via a set of r ele-vant instances of JOIN predicates, including: range and equality (e.g., for 

geographical data), Hamming distance (e.g., for DNA matching) and semantics (i.e., in health-care scenarios – m 

apping antibiotics to bacteria). The initial client computation overhead for 100000 data items is around 5 minutes 

and our privacy mechanisms can sustain theoretical throughputs of several million predicate evaluations per second, 

even for an un-optimized Open SSL based implementation. 
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     Introduction 
Outsourcing the “database as a service emerged as 

an affordable data management model for parties 

(“data owners”) with limited abilities to host and 

support large in-house data centers of potentially 

significant resource footprint. In t his model a client 

outsources its data management to a database service 

provider which provides online access mechanisms 

for querying and managing the hosted data sets.  
Because most of the data management and query 

execution load is incurred by the service provider and 

not by the client, this is intuitively advantageous and 

significantly more affordable for parties with less 

experience, resources or trained manpower. 

Compared with e.g., a small company, with likely a 

minimal data management knowledge, such a 

database service provider intuitively has the 

advantage of expertize and the ability to offer the 

service much cheaper, with increased service 

availability and uptime guarantees.  
Significant security issues are associated with such 

“out-sourced database” frameworks, including 

communication-layer security and data 

confidentiality. Confidentiality al one can be 

achieved by encrypting the outsourced content. Once 

encrypted however, the data cannot be easily 

processed by the server. This limits the applicability 

of outsourcing, as the type of processing primitives 

available will be reduced dramatically.  
Thus, it is important to provide mechanisms for 

server-side data processing that allow both 

confidentiality and a sufficient level of query 

expressibility. This is particularly relevant in 

relational settings. Recently, protocols for equijoin 

and range queries have been proposed. 

Here we go one step further and provide low 

overhead solutions for general binary JOIN 

predicates that satisfy certain properties: for any 

value in the considered data domain, the number of 

corresponding “matching” pair values (for which the 

predicate holds) is upper bound. We call these finite 

match predicates (FMPs). 

 

Materials and methods 
We choose to keep the data outsourcing model 

concise yet representative. Sensitive data is placed by 

a client on a database server situated at the site and 

under the control of a database service provider. 

Later, the client can access the outsourced data 
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through an online query interface exposed by the 

server. Network layer confidentiality is assured by 

mechanisms such as SSL/IPSec. For this purpose, 

they will encrypt data before outsourcing. As 

encrypted data is hard to process without revealing it, 

to allow for more expressive server-side data 

processing, clients will also pre-process data 

according to a set of supported (join) predicates. 

They will then outsource additional associated 

metadata to aid the server in processing tasks. This 

metadata, however, will still be “locked” until such 

processing tasks are requested by the client. Later, to 

allow server-side data processing, the client will 

provide certain “unlocking” information for the 

metadata a sso-ciated with the accessed items. The 

server will perform exactly the considered query (and 

nothing more) without finding out any additional 

information.  
It is important for the outsourced metadata not to 

reveal any information about the original data. 

Additionally, the computation, storage and network 

transfer overhead should maintain the cost 

advantages of outsourcing, e.g., execution times 

should not increase significantly. 

 
Finite Match Predicates (FMPs) 
    In this paper we consider binary predicates p : X × 
Y → B = {true, f alse} for which the “match sets” P 
(x) := {y|p(x, y) = true} can be computed by a 
polynomial time algorithm and their size (taken over 
all encountered values of x) is upper bound. In other 
words, given a certain value x in the considered data 
domain, its “matching” values can be determined in 
polynomial time and their number is upper bound. 
We call these predicates finite match predicates 
(FMPs). For a relation R matched against a relation 
S, we define MMS, the maximum match size, to be 
the maximum number of matching values from 
relation R for any row in relation S. For instance, 
consider the following discrete time – range join 
query that joins arrivals with departures within the 
same 30 mins interval (e.g., in a train station): 
SELECT * FROM arrivals,departures WHERE 
ABS(arrivals.time - departures.time) < 30 In this 
example, the FMP has an MMS of 60. 
 

Privacy Requirements 

    In the considered adversarial model, the following 

privacy requirements are of concern. 

 

Initial Confidentiality 

   The server should not be able to evaluate inter-

column join predicates on initially stored data 

without client “unlock” permission. Formally, given 

a relation A with encoded elements D[a1], .., D[an ], 

a relation B with encoded elements D[b1], .., D[bm], 

any random values i ∈  {1...n} and j ∈  {1..m}, for 

any probabilistic polynomial time server algorithm 

S, the value |P r[S(D[ai ], D[bj ])]−1/2| is negligible. 

  
Predicate Safety. Following a client join request, 

the server can only evaluate the stored data for the 

predicate provided by the client. Specifically, given a 

relation A with encoded elements D[a1], .., D[an], a 

relation B with encoded elements D[b1], .., D[bm], 

and a predicate pred for which the client provides 

opening information open(pred), the server can only 

learn the value pred(ai , bj ) ∈  {true, f alse}, ∀ i = 

1...n and j = 1...m. Formally, given a predicate pred 

and corresponding 

open(pred) revealed by the client, for any other 

predicate pred′ =6 pred for which the server does not 

have open(pred′) and any random values i ∈  {1...n} 

and j ∈  {1...m}, for any probabilistic polynomial 

time server algorithm S, the value |P r[Spred′ 

6=pred(open(pred), D[ai ], D[bj ])] − 1/2| is negligible.  
We stress that here we do not provide 

confidentiality of predicates, but rather just of the 

underlying target data. We also note that we do not 

consider here the ability of the server to use out of 

band information and general knowledge about the 

data sets to infer what the underlying data and the 

query results look like. In fact we envision a more 

formal definitio n in which privacy guarantees do not 

allow any leaks to the server beyond exactly such 

inferences that the curious server may do on its own 

based on outside information. 

 

Performance Constraints 

   The main performance constraint we are interested 

in is maintaining the applicability of out-sourcing. In 

particular, if a considered query load is more efficient 

(than client processing) in the unsecured data out - 

sourcing model – then it should still be more efficient 

in the secured version. We believe this constraint is 

essential, as it is important to identify solutions that 

validate in real life. There exist a large number of 

apparently more elegant cryptographic primitives that 

could be deployed that would fail this constraint. In 

particular, experimental results indicate that 

predicate evaluations on the server should not 

involve any expensive (large modulus) modular 

arithmetic such as exponentiation or multiplication. 

We resisted the (largely impractical) trend (found in 

existing research) to use homomorphisms in server 

side operations, which would have simplified the 

mechanisms in theory but would have failed in 
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practice due to extremely poor performance, beyond 

usability. In fact, in Section V we show that solutions 

that would employ homomorphisms would be several 

(2-4) orders of magnitude slower than solutions that 

we propose in this paper.  
We assume that server storage is cheap. This 

assumption is supported by recent findings that show 

the total cost of storage management is orders of 

magnitude higher than the storage equipment 

acquisition costs. 
 

Adversary 

   We consider an honest but curious server: given the 

possibility to get away undetected, it will attempt to 

compromise data confidentiality (e.g., in the process 

of que ry execution). The protocols in this paper are 

protecting mainly data confidentiality . The server 

can certainly choose to deny service by explicitly not 

cooperating with its clients, e.g., by not returning 

results or simply closing connections. 

 

Tools  

    Encryption, Hashing and Random Numbers.: We 

con-sider ideal, collision-free hashes, denoted by H . 

We consider semantically secure (IND-CPA) 

encryption mechanisms. We denote by EK (v) the 

encryption of value v with secret key K. If not 

specified, the key K will be implicitly secret and 

known only to the client. In the following, we use the 

notation x    →R S to denote x's uniformly random 

choice from S.  

 

p prime number 
N bit size of p 
G subgroup of Zp 
p order of G 
g generator of G 

xA , yA 
secret values for 
column A    

TABLE OF SYMBOLS USED IN OUR 
SOLUTIONS. 
 

Proof: Let us assume that for a relation A with 

encoded elements D[a1], .., D[an] and a a relation B 

with encoded elements D[b1], .., D[bm], there exists a 

PPT algorithm A and a pair of values i ∈  {1...n} and 

j ∈  {1..m} such that |P r[S(D[ai ], D[bj ])] − 1/2| > ǫ. 

Let the element D[ai] = 
[EK (ai), O(ai), BF (ai)]  and let D[bj ]  = [EK (bj ), 
O(bj ),  
BF (bj )]. Then, A can have advantage ǫ only if (i) EK 

(ai) can be distinguished from EK (bj ) with advantage 

larger than ǫ, or if (ii) O(ai ) can be distinguished 

from O(bj ) with advantage larger than ǫ or if (iii) 

O(ai ) can be searched for in BF (bj ) (the symmetric 

case is identical). In case (i), we can also build an 

algorithm that has advantage larger than ǫ against the 

IND-CPA game of the semantically secure encryption 

E. Case (ii) cannot occur in an information theoretic 

sense, since the values O(ai) and O(bj ) are obfuscated 

with different random values. For case (iii), let us 

consider for simplicity that BF (bj ) stores the set P (bj ) 

as the set of obfuscated values eB (v), where v ∈ P (bj 

) – instead of using a Bloom filter to encode the eB (v) 

values. Then, if A can find g
O(ai ) in the set of values 

eB (v) = g
H(v)yB , then we can also build an algorithm 

that defeats the discrete logarithm assumption. 

Algorithm : The JH algorithm performing a 
Hamming join between columns A and B. 
-------------------------------------------------------------  
hamming JOIN(A, B, rA(k), rB(k), rk, k = 

1..β) forall ai ∈  A and k = 1..β do  
v(aik) = rA(k)Z(aik) 

mod p; forall bj ∈  B and 

k = 1..β do 
v(bjk) = rB(k)Z(bjk) 
mod p; u(bjk) = 
rO

k
(bjk) mod p;  

forall bj ∈  B 
do forall 

ai ∈  A do 

c ← 0;  
for (k ← 1; k ≤ β; k ← 

k + 1) if v(aik) 6= 
v(bjk) then 

if BFij(A).contains(u(bjk)) then 
c ← c + 1;   

else   
c ← −1; 
#signaldrop break;   

if c = −1 then continue; #drop(ai, bj) if 

c ≤ d then output[EK(ai), EK(bj)]; 

------------------------------------------------- 

 

Results and discussion 
   We now prove the following result for the 

Hamming join solution proposed above. 

 

Predigate Safety Notes: 

  Prdigate Safety: The server can in fact determine 

the actual Hamming distance between matching (but 

encrypted) (ai, bj ) pairs (satisfying the dH (ai, bj ) < d 

condition). Moreover, the server can also find the 

Hamming distance of some encrypted (ai, bj ) pairs 

for which d < dH (ai, bj ) ≤ β. While out of scope here, 
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a solution can be provided for this case by prefixing 

original ai, bj values with a random number of special 

symbols with controllable Hamming distances. 

 
Complexity Analysis: Let Tencr be the time to 

encrypt an element, Texp the time to perform one 
modular (p) exponen-tiation, Tmul the time to perform 
a modular (q) multiplication and Thash the time to 
perform a crypto-hash operation. h is the number of 
hash functions used to encode elements in a Bloom 
filter. Then, if t is the number of attributes in the 
relation, the following results hold. 

 
Lemma :  The  initial  client  overhead  is  tn(Tencr   
+ 

2β(Texp + Thash + Tmul) + b(Texp + (h + 1)Thash + 
Tmul)).  

Proof: The per-element initial overhead is the 
sum of three factors: 

 (i) the cost to encrypt the element, 
 (ii) the cost to generate the obfuscated O and Z 

values and  
(iii) the cost to generate the β Bloom filters, 

each storing b/β elements 
. The cost of storing one element in a Bloom 

filter is equal to the cost of generating the obfuscated 
element (a crypto-hash application and an XOR) plus 
the cost of another h crypto-hashes for generating the 
bit-wise positions to be set to 1. 

 
Arbitrary Alphabets 

     The above solution can also be deployed for 

an arbitrary alphabet, that is, when the elements 

stored in the database D are composed of symbols 

from multi-bit alphabets (e.g., DNA sequences). This 

can be done by de-ploying a custom binary coding 

step. Let A = {α0, .., αu−1 } be an alphabet of u 

symbols. In the pre-processing phase, the client 

represents each symbol over u bits (u/ log u-fold 

blowup in storage), such that symbol αu = 2i. That is, 

dH (αi, αj ) is 1 if i 6= j and 0 otherwise. If each data 

item has b symbols, each of the item's blocks will 

have bu/β bits, and, due to the coding, pairs of 

elements of symbol-wise distance d will have a 2d 

bit-wise Hamming distance. Thus, after the coding 

phase, the above algorithm can be deployed without 

change. As an example, for an alphabet of 4 symbols 

{A,C,G,T}, the following encoding will be used 

{A=0001,C=0010,G=0100,T=1000}. To compare the 

strings ACG and ACT (alphabet distance 2), the 

following two binary strings will be compared 

instead: 000100100100 and000100101000 (binary 

Hamming distance 2). 

 
Arbitrary Distances.: One drawback of the 

previous solution is the fixed nature of the Hamming 
distance d that can be considered. To accommodate a 
different distance, additional metadata would need to 

be generated by the client accordingly. Instead, it 
would be desirable to provide a single solution for 
any distances. In the following we show how to 
extend the above solution for arbitrary distances.  

For this purpose, the encoding algorithm EH is 
modified to perform a hierarchical generalization of 
the previous shuffle-and-divide pre-processing step.  
 

Conclusion 
In this paper we introduced mechanisms for 

executing JOIN operations on outsourced relational 

data with full computa-tional privacy and low 

overheads The solution is not hard-coded for specific 

JOIN predicates (e.g., equijoin) but rath er works for 

a large set of predicates satisfying certain properties. 

We evaluated its main overhead components 

experimentally and showed that we can perform more 

over 5 million private FMPs per second, which is 

between two and four orders of magnitude faster than 

alternatives that would use asymmetric encryption 

algorithms with homomorphic properties to achieve 

privacy. 
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